博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
[LeetCode] Graph Valid Tree
阅读量:7118 次
发布时间:2019-06-28

本文共 1828 字,大约阅读时间需要 6 分钟。

Problem Description:

Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), write a function to check whether these edges make up a valid tree.

For example:

Given n = 5 and edges = [[0, 1], [0, 2], [0, 3], [1, 4]], return true.

Given n = 5 and edges = [[0, 1], [1, 2], [2, 3], [1, 3], [1, 4]], return false.

Hint:

    1. Given n = 5 and edges = [[0, 1], [1, 2], [3, 4]], what should your return? Is this case a valid tree?
    2. According to the : “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

Note: you can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together inedges.


As suggested by the hint, just check for cycle and connectedness in the graph. Both of these can be done via DFS.

The code is as follows.

1 class Solution { 2 public: 3     bool validTree(int n, vector
>& edges) { 4 vector
> neighbors(n); 5 for (auto e : edges) { 6 neighbors[e.first].push_back(e.second); 7 neighbors[e.second].push_back(e.first); 8 } 9 vector
visited(n, false);10 if (hasCycle(neighbors, 0, -1, visited))11 return false;12 for (bool v : visited)13 if (!v) return false; 14 return true;15 }16 private:17 bool hasCycle(vector
>& neighbors, int kid, int parent, vector
& visited) {18 if (visited[kid]) return true;19 visited[kid] = true;20 for (auto neigh : neighbors[kid])21 if (neigh != parent && hasCycle(neighbors, neigh, kid, visited))22 return true;23 return false;24 }25 };

 

转载地址:http://gobel.baihongyu.com/

你可能感兴趣的文章